Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anaerobe ; 87: 102837, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38527650

RESUMEN

OBJECTIVES: In the US, Clostridioides difficile (C. difficile) infection (CDI) is the 8th leading cause of hospital readmission and 7th for mortality among all gastrointestinal (GI) disorders. Here, we investigated GI dysfunction post-CDI in humans and mice post-acute infection. MATERIALS AND METHODS: From March 2020 to July 2021, we reviewed the clinical records of 67 patients referred to the UVA Complicated C. difficile clinic for fecal microbiota transplantation (FMT) eligibility. C57BL/6 mice were infected with C. difficile and clinical scores were determined daily. Stool samples from mice were collected to measure the shedding of C. difficile and myeloperoxidase (MPO) levels. On day 21 post-infection, Evans's blue and FITC-70kDa methods were performed to evaluate GI motility in mice. RESULTS: Of the 67 patients evaluated at the C. difficile clinic, 40 patients (59.7%) were confirmed to have CDI, and 22 patients (32.8%) with post-CDI IBS (diarrhea-type, constipation-type, and mixed-type). In infected mice, levels of MPO in stools and clinical score were higher on day 3. On day 21, mice recovered from body weight loss induced by CDI, and fecal MPO was undetectable. The total GI transit time (TGITT) and FITC-70kDa levels on the proximal colon were increased in infected mice (p = 0.002), suggesting a constipation phenotype post-acute phase of CDI. A positive correlation intestinal inflammation on day 3 and TGITT on day 21 was observed. CONCLUSION: In conclusion, post-infection intestinal dysfunction occurs in humans and mice post-CDI. Importantly, we have validated in the mouse model that CDI causes abnormal GI transit in the recovery phase of the disease, indicating the potential utility of the model in exploring the underlying mechanisms of post-infectious IBS in humans.

2.
Front Immunol ; 13: 956340, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072579

RESUMEN

Clostridioides difficile (C. difficile) produces toxins A (TcdA) and B (TcdB), both associated with intestinal damage and diarrhea. Pannexin-1 (Panx1) channels allows the passage of messenger molecules, such as adenosine triphosphate (ATP), which in turn activate the P2X7 receptors (P2X7R) that regulate inflammation and cell death in inflammatory bowel diseases. The aim of this study was to verify the effect of C. difficile infection (CDI) in the expression of Panx1 and P2X7R in intestinal tissues of mice, as well as their role in cell death and IL-6 expression induced by TcdA and TcdB in enteric glial cells (EGCs). Male C57BL/6 mice (8 weeks of age) were infected with C. difficile VPI10463, and the control group received only vehicle per gavage. After three days post-infection (p.i.), cecum and colon samples were collected to evaluate the expression of Panx1 by immunohistochemistry. In vitro, EGCs (PK060399egfr) were challenged with TcdA or TcdB, in the presence or absence of the Panx1 inhibitor (10Panx trifluoroacetate) or P2X7R antagonist (A438079), and Panx1 and P2X7R expression, caspase-3/7 activity and phosphatidylserine binding to annexin-V, as well as IL-6 expression were assessed. CDI increased the levels of Panx1 in cecum and colon of mice compared to the control group. Panx1 inhibitor decreased caspase-3/7 activity and phosphatidylserine-annexin-V binding, but not IL-6 gene expression in TcdA and TcdB-challenged EGCs. P2X7 receptor antagonist accentually reduced caspase-3/7 activity, phosphatidylserine-annexin-V binding, and IL-6 gene expression in TcdA and TcdB-challenged EGCs. In conclusion, Panx1 is increased during CDI and plays an important role in the effects of C. difficile toxins in EGCs, participating in cell death induced by both toxins by promoting caspase-3/7 activation via P2X7R, which is also involved in IL-6 expression induced by both toxins.


Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Conexinas , Proteínas del Tejido Nervioso , Receptores Purinérgicos P2X7 , Animales , Anexinas , Toxinas Bacterianas/metabolismo , Caspasa 3/metabolismo , Muerte Celular , Conexinas/genética , Conexinas/metabolismo , Mediadores de Inflamación , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/metabolismo , Fosfatidilserinas , Receptores Purinérgicos P2X7/genética
3.
Front Nutr ; 9: 849301, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35795588

RESUMEN

Changes in intestinal microbiota are integral to development of Clostridioides difficile (C. difficile)-associated nosocomial diarrhea. Certain diets, especially Western diets, increase susceptibility to C. difficile infection (CDI). Here, we discuss recent findings regarding how nutrients modulate response of the host and C. difficile during infection. Calcium has a role in the sporulation and germination process. Selenium is effective in reducing the total amount of C. difficile toxin A (TcdA) and toxin B (TcdB) and in decreasing its cytotoxicity. In addition, selenium phosphate synthetase deficiency reduces C. difficile growth and spore production. On the other hand, iron has a dual role in C. difficile growth. For instance, high intracellular levels can generate reactive hydroxyl radicals, whereas low levels can reduce its growth. In humans, zinc deficiency appears to be related to the recurrence of CDI, in contrast, in the CDI model in mice a diet rich in zinc increased the toxin's activity. Low vitamin D levels contribute to C. difficile colonization, toxin production, and inflammation. Furthermore, glutamine appears to protect intestinal epithelial cells from the deleterious effects of TcdA and TcdB. In conclusion, nutrients play an important role in modulating host and pathogen response. However, further studies are needed to better understand the mechanisms and address some controversies.

4.
Front Immunol ; 13: 956326, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36726986

RESUMEN

Increased risk of intestinal dysfunction has been reported in patients after Clostridioides difficile infection (CDI). Enteric glial cells (EGCs), a component of the enteric nervous system (ENS), contribute to gut homeostasis. Previous studies showed that adenosine receptors, A2A and A2B, modulate inflammation during CDI. However, it is unknown how these receptors can modulate the EGC response to the C. difficile toxins (TcdA and TcdB). We investigated the effects of these toxins on the expression of adenosine receptors in EGCs and the role of these receptors on toxin-induced EGC death. Rat EGCs line were incubated with TcdA or TcdB alone or in combination with adenosine analogues 1h prior to toxins challenge. After incubation, EGCs were collected to evaluate gene expression (adenosine receptors and proinflammatory markers) and cell death. In vivo, WT, A2A, and A2B KO mice were infected with C. difficile, euthanized on day 3 post-infection, and cecum tissue was processed. TcdA and TcdB increased A2A and A3 transcripts, as well as decreased A2B. A2A agonist, but not A2A antagonist, decreased apoptosis induced by TcdA and TcdB in EGCs. A2B blocker, but not A2B agonist, diminished apoptosis in EGCs challenged with both toxins. A3 agonist, but not A3 blocker, reduced apoptosis in EGCs challenged with TcdA and TcdB. Inhibition of protein kinase A (PKA) and CREB, both involved in the main signaling pathway driven by activation of adenosine receptors, decreased EGC apoptosis induced by both toxins. A2A agonist and A2B antagonist decreased S100B upregulation induced by C. difficile toxins in EGCs. In vivo, infected A2B KO mice, but not A2A, exhibited a decrease in cell death, including EGCs and enteric neuron loss, compared to infected WT mice, reduced intestinal damage and decreased IL-6 and S100B levels in cecum. Our findings indicate that upregulation of A2A and A3 and downregulation of A2B in EGCs and downregulation of A2B in intestinal tissues elicit a protective response against C. difficile toxins. Adenosine receptors appear to play a regulatory role in EGCs death and proinflammatory response induced by TcdA and TcdB, and thus may be potential targets of intervention to prevent post-CDI intestinal dysmotility.


Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Infecciones por Clostridium , Ratas , Ratones , Animales , Toxinas Bacterianas/metabolismo , Clostridioides difficile/fisiología , Proteínas Bacterianas/genética , Infecciones por Clostridium/metabolismo , Apoptosis , Neuroglía/metabolismo , Receptores Purinérgicos P1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...